History

Net metering originated in the United States, where small wind turbines and solar panels were connected to the electrical grid, and consumers wanted to be able to use the electricity generated at a different time or date from when it was generated. The first two projects to use net metering were an apartment complex and a solar test house in Massachusetts in 1979.  Minnesota is commonly cited as passing the first net metering law, in 1983, and allowed anyone generating less than 40 kWh to either roll over any credit to the next month, or be paid for the excess. In 2000 this was amended to compensation "at the average retail utility energy rate". This is the simplest and most general interpretation of net metering, and in addition allows small producers to sell electricity at the retail rate.

Utilities in Idaho adopted net metering in 1980, and in Arizona in 1981. Massachusetts adopted net metering in 1982. By 1998, 22 states or utilities therein had adopted net metering. Two California utilities initially adopted a monthly "net metering" charge, which included a "standby charge", until the Public Utilities Commission (PUC) banned such charges. In 2005, all U.S. utilities were required to offer net metering "upon request". Excess generation is not addressed. As of 2013, 43 U.S. states have adopted net metering, as well as utilities in 3 of the remaining states, leaving only 4 states without any established procedures for implementing net metering. However, a 2017 study showed that only 3% of U.S. utilities offer full retail compensation for net metering with the remainder offering less than retail rates, having credit expire annually, or some form of indefinite rollover.

Net metering was slow to be adopted in Europe, especially in the United Kingdom, because of confusion over how to address the value added tax (VAT). Only one utility company in Great Britain offers net metering.

The United Kingdom government is reluctant to introduce the net metering principle because of complications in paying and refunding the value added tax that is payable on electricity, but pilot projects are underway in some areas.

In Canada, some provinces have net metering programs.

In the Philippines, Net Metering scheme is governed by Republic Act 9513 (Renewable Energy Act of 2008) and its implementing rules and regulation (IRR). The implementing body is the Energy Regulatory Commission (ERC) in consultation with the National Renewable Energy Board (NREB). Unfortunately, the scheme is not a true net metering scheme but in reality a net billing scheme. As the Dept of Energy's Net Metering guidelines say, "

“Net-metering allows customers of Distribution Utilities (DUs) to install an on-site Renewable Energy (RE) facility not exceeding 100 kilowatts (kW) in capacity so they can generate electricity for their own use. Any electricity generated that is not consumed by the customer is automatically exported to the DU’s distribution system. The DU then gives a peso credit for the excess electricity received equivalent to the DU’s blended generation cost, excluding other generation adjustments, and deducts the credits earned to the customer’s electric bill.” 

Thus Philippine consumers who generate their own electricity and sell their surplus to the utility are paid what is called the "generation cost" which is often less than 50% of the retail price of electricity.

Controversy

Net metering is controversial as it affects different interests on the grid. A report prepared by Peter Kind of Energy Infrastructure Advocates for the trade association Edison Electric Institute stated that distributed generation systems, like rooftop solar, present unique challenges to the future of electric utilities. Utilities in the United States have led a largely unsuccessful campaign to eliminate net metering

Benefits

Renewable advocates point out that while distributed solar and other energy efficiency measures do pose a challenge to electric utilities' existing business model, the benefits of distributed generation outweigh the costs, and those benefits are shared by all ratepayers. Grid benefits of private distributed solar investment include reduced need for centralizing power plants and reduced strain on the utility grid. They also point out that, as a cornerstone policy enabling the growth of rooftop solar, net metering creates a host of societal benefits for all ratepayers that are generally not accounted for by the utility analysis, including: public health benefits, employment and downstream economic effects, market price impacts, grid security benefits, and water savings.

An independent report conducted by the consulting firm Crossborder Energy found that the benefits of California's net metering program outweigh the costs to ratepayers. Those net benefits will amount to more than US$92 million annually upon the completion of the current net metering program.

A 2012 report on the cost of net metering in the State of California, commissioned by the California Public Utilities Commission (CPUC), showed that those customers without distributed generation systems will pay US$287 in additional costs to use and maintain the grid every year by 2020. The report also showed the net cost will amount to US$1.1 billion by 2020. Notably, the same report found that solar customers do pay more on their power bills than what it costs the utility to serve them (Table 5, page 10: average 103% of their cost of service across the three major utilities in 2011).

Drawbacks

Many electric utilities state that owners of generation systems do not pay the full cost of service to use the grid, thus shifting their share of the cost onto customers without distributed generation systems. Most owners of rooftop solar or other types of distributed generation systems still rely on the grid to receive electricity from utilities at night or when their systems cannot generate sufficient power.

A 2014 report funded by the Institute for Electric Innovation claims that net metering in California produces excessively large subsidies for typical residential rooftop solar photovoltaic (PV) facilities. These subsidies must then be paid for by other residential customers, most of whom are less affluent than the rooftop solar PV customers. In addition, the report points out that most of these large subsidies go to the solar leasing companies, which accounted for about 75 percent of the solar PV facilities installed in 2013. The report concludes that changes are needed in California, ranging from the adoption of retail tariffs that are more cost-reflective to replacing net metering with a separate "Buy All - Sell All" arrangement that requires all rooftop solar PV customers to buy all of their consumed energy under the existing retail tariffs and separately sell all of their onsite generation to their distribution utilities at the utilities' respective avoided costs.

Post-net metering successor tariffs

On a nationwide basis, energy officials have debated replacement programs for net metering for several years. As of 2018, a few "replicable models" have emerged. Utility companies have always contended that customers with solar get their bills reduced by too much under net metering, and as a result, that shifts costs for keeping up the grid infrastructure to the rest of the non-solar customers. "The policy has led to heated state-level debates since 2013 over whether — and how — to construct a successor to the policy," according to Utility Dive. The key challenge to constructing pricing and rebate schemes in a post-net metering environment is how to compensate rooftop solar customers fairly while not imposing costs on non-solar customers. Experts have said that a good "successor tariff," as the post-net metering policies have been called, is one that supports the growth of distributed energy resources in a way where customers and the grid get benefits from it.

Thirteen states swapped successor tariffs for retail rate net metering programs in 2017. In 2018, three more states made similar changes. For example, compensation in Nevada will go down over time, but today the compensation is at the retail rate (meaning, solar customers who send energy to the grid get compensated at the same rate they pay for electricity). In Arizona, the new solar rate is ten percent below the retail rate.

The two most common successor tariffs are called net billing and buy-all-sell-all (BASA). "Net billing pays the retail rate for customer-consumed PV generation and a below retail rate for exported generation. With BASA, the utility both charges and compensates at a below-retail rate."

Comparison

Net metering, unlike a feed-in tariff, requires only one meter, but it must be bi-directional.

There is considerable confusion between the terms "net metering" and "feed-in tariff"# (FIT). In general there are three types of compensation for local, distributed generation:

  1. Net metering: always at retail, and which is not technically compensation, although it may become compensation if there is excess generation and payments are allowed by the utility.
  2. Feed-in tariff: generally above retail, and reduces to retail as the percentage of adopters increases.
  3. Power purchase agreement: Compensation generally below retail, also known as a "Standard Offer Program", can be above retail, particularly in the case of solar, which tends to be generated close to peak demand.  

Net metering only requires one meter. A feed-in tariff requires two.

Time of use metering

Time of use (TOU) net metering employs a smart (electric) meter that is programmed to determine electricity usage any time during the day. Time-of-use allows utility rates and charges to be assessed based on when the electricity was used (i.e., day/night and seasonal rates). Typically the generation cost of electricity is highest during the daytime peak usage period, and lowest at night. Time of use metering is a significant issue for renewable-energy sources, since, for example, solar power systems tend to produce energy during the daytime peak-price period, and produce little or no power during the night period, when price is low. Italy has installed so many photovoltaic cells that peak prices no longer are during the day, but are instead in the evening. TOU net metering affects the apparent cost of net metering to a utility.

Market rate net metering

In market rate net metering systems the user's energy use is priced dynamically according to some function of wholesale electric prices. The users' meters are programmed remotely to calculate the value and are read remotely. Net metering applies such variable pricing to excess power produced by a qualifying system.

Market rate metering systems were implemented in California starting in 2006, and under the terms of California's net metering rules will be applicable to qualifying photovoltaic and wind systems. Under California law the payback for surplus electricity sent to the grid must be equal to the (variable, in this case) price charged at that time.

Net metering enables small systems to result in zero annual net cost to the consumer provided that the consumer is able to shift demand loads to a lower price time, such as by chilling water at a low cost time for later use in air conditioning, or by charging a battery electric vehicle during off-peak times, while the electricity generated at peak demand time can be sent to the grid rather than used locally (see Vehicle-to-grid). No credit is given for annual surplus production.

Excess generation

Excess generation is a separate issue from net metering, but it is normally dealt with in the same rules, because it can arise. If local generation offsets a portion of the demand, net metering is not used. If local generation exceeds demand some of the time, for example during the day, net metering is used. If local generation exceeds demand for the billing cycle, best practices calls for a perpetual roll over of the kilowatt-hour credits, although some regions have considered having any kWh credits expire after 36 months. The normal definition of excess generation is annually, although the term is equally applicable monthly. The treatment of annual excess generation (and monthly) ranges from lost, to compensation at avoided cost, to compensation at retail rate. Left over kWh credits upon termination of service would ideally be paid at retail rate, from the consumer standpoint, and lost, from the utility standpoint, with avoided cost a minimum compromise. Some regions allow optional payment for excess annual generation, which allows perpetual roll over or payment, at the customers choice. Both wind and solar are inherently seasonal, and it is highly likely to use up a surplus later, unless more solar panels or a larger wind turbine have been installed than needed.

Energy storage

Net metering systems can have energy storage integrated, to store some of the power locally (i.e. from the renewable energy source connected to the system) rather than selling everything back to the mains electricity grid. Often, the batteries used are industrial deep cycle batteries as these last for 10 to 20 years. Lead-acid batteries are often also still used, but last much less long (5 years or so). Lithium-ion batteries are sometimes also used, but too have a relatively short lifespan. Finally, nickel-iron batteries last the longest with a lifespan of up to 40 years. A 2017 study of solar panels with battery storage indicated an 8 to 14 percent extra consumption of electricity from charging and discharging batteries.